Cocoa Touch: Circumventing UITableViewCell Redraw Issues with Multithreading

In your career as a Cocoa or Cocoa Touch developer, every now and then you’ll encounter an issue with something Apple has written. Whether it’s a full-blown bug, something that doesn’t work quite how you’d expect it to, or a minor inconvenience, it happens. When it does, naturally the first thing you do is file a bug report (right?). After that, though, you need to do something about it. This usually occurs right when a project is due, so often we can’t wait for Apple’s engineering teams to fix the problems (or tell you that you’re wrong). This post is an example of using KVO to get around the problem without worrying about it anymore.

The Problem: In iOS, if you create a UITableViewCell and return it to the table view in its data source’s -tableView:cellForRowAtIndexPath: method, but then return later (say, after doing some background processing) to add an image to the cell’s imageView, you don’t see anything! Why? Well, it looks like either the image view isn’t added to the cell’s view hierarchy if you don’t immediately add an image or there’s some other bug in the UITableViewCell implementation. I don’t think it’s a bug, I think it’s just a side effect of an optimization; if there’s no image, why add it to the cell?

So how do we fix it? Well, a simple call to -setNeedsLayout gets the cell to fix itself quite nicely. But we shouldn’t have to do that from our table view data source—that has a bit of code smell to it. Lines like that quickly get overused, with programmers calmly stating, “I don’t know why, but we always do that.” No, a better solution is to get the cell to handle this problem on its own.

We’ll create a subclass of UITableViewCell and use KVO. When we create the cell, we’ll register for KVO notifications with the on the image view whenever its image property is modified—but we’ll send the option to include the old value in the change dictionary. When we receive the notification, we’ll look at that dictionary, and if the old value was nil, then we’ll send self a -setNeedsLayout message. This avoids having to do it in other classes, and only does it when necessary. We simply set it and forget it.

Ta-da.

Cocoa Touch Tutorial: Using Grand Central Dispatch for Asynchronous Table View Cells

One of the problems that an iOS developer will often face is the performance of table view cells. Table view cells are loaded on-demand by the UITableView that they’re a part of; the system calls ‑cellForRowAtIndexPath: on the table view’s dataSource property to fetch a new cell in order to display it. Since this method is called (several times) while scrolling a table view, it needs to be very performant. You don’t have very much time to provide the system with a table view cell; take too long, and the application will appear to stutter to your users. This kills the immersion of your application and is an instant sign to users that the application is poorly-written. I guess what I’m saying is that this code needs to be fast. But what if something you need to do to display the table view cell takes a long time—say, loading an image?

In my MobiDevDay presentation a couple of weeks ago, I illustrated a solution to this problem: Grand Central Dispatch. GCD, Apple’s new multiprocessing API in Mac OS X Snow Leopard and iOS 4, is the perfect solution for this problem. Let’s take a look at how it works.

Grand Central Dispatch operates using queues. Queues are a C typedef: dispatch_queue_t. To get a new global queue, we call dispatch_get_global_queue(), which takes two arguments: a long for priority and an unsigned long for options, which is unused, so we’ll pass 0ul. Here’s how we get a high-priority queue:

[sourcecode language=”objc” gutter=”false”]dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0ul);[/sourcecode]

It’s pretty straightforward. To use this queue, we add blocks of code onto it. Typically this is done with blocks (Apple’s new code encapsulation extension to the C language), though it can be done with C functions. To submit a block onto a queue for execution, use the functions dispatch_sync and dispatch_async. They both take a queue and a block as parameters. dispatch_async returns immediately, running the block asynchronously, while dispatch_sync blocks execution until the provided block returns (though you cannot use its return value). Here’s how we schedule some code onto a queue (we’ll assume this code runs after our previous example, so queue is already defined):

[sourcecode language=”objc” gutter=”false”]dispatch_async(queue, ^{
NSLog(@"Hello, World!");
});[/sourcecode]

It’s very easy to forget the ); at the end of that line, so be careful.

How does this apply to table view cells? Let’s take a look at a typical scenario for loading images from disk:

[sourcecode language=”objc” firstline=”33″]- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
static NSString *CellIdentifier = @"ExampleCell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
}

// Get the filename to load.
NSString *imageFilename = [imageArray objectAtIndex:[indexPath row]];
NSString *imagePath = [imageFolder stringByAppendingPathComponent:imageFilename];

[[cell textLabel] setText:imageFilename];
UIImage *image = [UIImage imageWithContentsOfFile:imagePath];
[[cell imageView] setImage:image];

return cell;
}[/sourcecode]

The problem with that code is that creating image blocks until ‑imageWithContentsOfFile: returns. If the images are especially large, this is catastrophic. Modifying this code to use Grand Central Dispatch is simple:

[sourcecode language=”objc” firstline=”33″]- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
}

// Get the filename to load.
NSString *imageFilename = [imageArray objectAtIndex:[indexPath row]];
NSString *imagePath = [imageFolder stringByAppendingPathComponent:imageFilename];

[[cell textLabel] setText:imageFilename];

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0ul);

dispatch_async(queue, ^{
UIImage *image = [UIImage imageWithContentsOfFile:imagePath];

dispatch_sync(dispatch_get_main_queue(), ^{
[[cell imageView] setImage:image];
[cell setNeedsLayout];
});
});

return cell;
}[/sourcecode]

First, we create our image asynchronously by using dispatch_async(). Once we have it, however, we have to come back to the main thread in order to update our table view cell’s UI (all UI updates should be on the main thread, unless you like reading crash reports). GCD has a function to get the main queue—analogous to the main thread—called dispatch_get_main_queue(). We can dispatch a block to that thread to update the UI.

By making this simple modification, we can very easily improve the performance of our table view. There are a few steps remaining, however, and this method has one serious shortcoming: if the cell is re-used by the time the image loads, it can load the wrong image into the cell. To get around this, it would be better to cache the images in an array or a dictionary (just be sure to release it in your view controller’s ‑didReceiveMemoryWarning: method). That said, this is an example of something you can do quite easily to improve the performance of your application. The better it performs, the more your users will like it, and that’s the ultimate goal.

The code used in this post is available as a GitHub repository.